
Overview of the Surmulot Music Composition System

Stéphane Rollandin
hepta@zogotounga.net

draft - 30 March 2012

Abstract

We present the Surmulot system for computer-assisted
music composition. This is a dual system with two main
entry points, the Emacs1 editor and a Squeak2 image, a
Smalltalk IDE3. Emacs allows for interfacing with
additional software, such as Csound4, while Squeak
implements an extensive collection of objects called µO,
for "musical objects". These include representations for
elementary musical elements sharing a mixing algebra,
complex models of musical concepts build upon them,
and interactive editors of many kinds making full use of
the powerful morphic5 GUI6 paradigm unique to Squeak.

1. Purpose

Surmulot is a personal research project ; as such, it does
not attempt to meet commercial quality standards in
terms of documentation, design or interface. It has been
in active development since 2003 and is very rapidly
changing in its scope and features.

Nevertheless it is today production-ready in its own
sense : it works, is stable, and can be used at many
different levels, from rapid prototyping of musical ideas
to extensive programmation enabling the user to tailor its
own musical tools or implement its own composition
paradigm.

2. Architecture

The two Surmulot main components are dynamic IDEs
linked via local TCP/IP7. One of them is the well-known
Emacs editor. Emacs controls subprocesses such as the
Csound soft synthesizer or utilities like sox8, abc2midi9,
wavesurfer10 and other ancilliary programs. The other
IDE is Squeak, an image-based Smalltalk
implementation. Squeak is the place were musical

1 http://www.gnu.org/software/emacs/
2 http://squeak.org/
3 Integrated Development Environment
4 http://www.csounds.com/
5 http://en.wikipedia.org/wiki/Morphic_(software)
6 Graphical User Interface
7 Transmission Control Protocol
8 http://sox.sourceforge.net/
9 http://abc.sourceforge.net/abcMIDI/
10 http://sourceforge.net/projects/wavesurfer/

composition concepts are reified and rendered interactive
in many unique ways. When the Squeak image is saved,
all its contents is preserved automatically : it behaves as a
permanent workshop where the composer can store and
play with all of its musical data without having to worry
about having to manage it for practical look-up and
retrieval ; everything is always there and can be backed-
up in one shot simply by renaming the Squeak image.

The two IDEs are linked so that it is possible to evaluate
Emacs Lisp expressions in Squeak, while it is also
possible to evaluate Smalltalk expression in Emacs. This
way we can harness at best the complementarity nature of
their world-views, text in Emacs and live objects in
Squeak : graphics can be dynamically generated by
Squeak and inserted in Emacs buffers, MIDI data can be
exchanged seamlessly, Emacs subprocesses can be
launched from Squeak, specialized Squeak image clones
can operate as graphical editors for relevant Emacs
buffers contents while reciprocally specialized Emacs
buffers can edit text-based data (such as ABC file or
Csound scores) in behalf of Squeak in which the data is
actually maintained. All of this is automatized so that the
composer gets the feeling of an integrated, single system.

3. Documentation

Because of its highly dynamic nature and fast evolution,
documentation is composed of either general descriptive
papers such as the one you are now reading or collections
of pointers to very specific pieces of documentation
living directly in the system : Info nodes or
documentation strings in Emacs, interactive book morphs
(some of them analog to Mathematica11 or Sage12
notebooks) in µO. The welcome buffer in Emacs acts as
the main entry point for documentation and provides all
important pointers.

4. Availability

Surmulot is composed of open-source software. It is
freely available from the Internet. It runs in Windows and
Linux systems while at the moment only part of it are
available for MacOS, were it will not behave as an
integrated system. Current status is detailed on the

11 http://www.wolfram.com/mathematica/
12 http://www.sagemath.org/

1

website13.

4. Overview of µO

µO stands for "musical objects" : it is the name of the
collection of classes implemented in Squeak for music
composition.

4.1. The mixing algebra

The fundamental paradigm for musical representation
used here is mixing : any musical element is a subclass of
MusicalElement and as such obeys a mixing algebra. A
musical element is always anchored in a local temporal
frame extending from time 0 to an arbitrary duration.
Relatively to that frame, the musical element always
occupy a definite position, starting at a given arbitrary
time and ending at another arbitrary time.

The elementary operator delay: moves the musical
element in its referential frame. The operator scale:
stretch it with respect to that frame. The operator
duration: sets the length of the frame14.

Two musical elements can always be mixed : their
temporal frames are merged. This fundamental operation
either results in a single musical element similar to the
initial ones, such as the merging of MusicalNotes into a
MusicalPhrase, or, when the mixed elements are not of
the same nature, in a CompositeMix, where the initial
musical elements are simply referenced at their respective
positions. Whenever we want to keep explicit the internal
structure of a the result of a mixing operation it is always
possible to ask for a CompositeMix. Reciprocally, we
can always send the compute message to a
CompositeMix so that it gets converted into a simpler
musical element, when possible. Other, more
sophisticated convertions can be performed so that a
CompositeMix gets interpreted as a another musical
element, such as a SoundElement.

The following diagrams will illustrate the fundamental
operators. We will represent musical element A by the
diagram

[music A]

0 dA

and musical element B by the diagram

[music B]

0 dB

13 http://www.zogotounga.net/surmulot/surmulot.html
14 This framework is inpired by the representation of

musical phrases in KeyKit, by Tim Thompson :
http://nosuch.com/keykit/

Both A and B are simple in the sense that they fully
occupy their own temporal frame: their start time is 0 and
their end time is equal to their frame duration.

The effect of delay:, depending on weither its argument
is positive or negative, can be

 [music A]

0 dA+delay

or

 [music A]

0 dA-delay

that is an offset of the musical element within its own
temporal frame, along with the modification of that frame
duration.

The combination of delay and mixing allows the
straightforward definition of three operators :

1) The concatenation operator + (also expressed as ,).

The diagram for A+B (or A,B) is

[music A][music B]

0 dA dA+dB

while B+A (or B,A) looks like

[music B][music A]

0 dB dA+dB

2) The mixing operator |

A | B is equal to B|A and looks like

[music A]
[music B]

0 dA dB

3) The backward mixing operator //

A // B is

 [music A]
[music B]

 dA-dB 0 dA

while B // A is:

 [music A]
[music B]

0 dB

2

Thus backward mixing is actually mixing after having
aligned the second element duration with the first element
duration.

Now let's consider two other musical elements those
structure is not as simple as A and B : the diagrams for
musical element C and D are

 [music C]

0 dC

and
 [music D]

0 dD

Since concatenation is relative to temporal frames the
diagram for C,D is

 [music C] [music D]
--
0 dC dC+dD

while D,C looks like

 [music D] [music C]
--
0 dD dD+dC

C | D is again the same as D | C (mixing):

 [music C]
 [music D]

0 dD dC

C // D (backward mixing) results in

 [music C]
 [music D]

0 dC

while the diagram for D // C is

 [music C]
 [music D]

 dD-dC 0 dD

Scaling a musical element happens relatively to its
temporal frame, as illustrated by the following diagrams :
the element

 [music]

0 duration

scaled to twice its duration becomes

 [music]

0 duration

When we add the possibility of scaling, two more basic
operators follow naturally: the synchronising operator &
where A&B is A mixed with B scaled to A duration,

[music A]
[music B]

0 dA

and the beat concatenation operator ,, where A,,B is A
followed by B scaled to A duration.

[music A][music B]

0 dA 2*dA

C&D looks like

 [music C]
 [music D]

0 dC

and D,,C looks like

 [music D] [music C]

0 dD 2*dD

Many other ways to modify the structure of a musical
element exist which we will not review here.

4.1. The main MusicalElements

AtomicElements subclasses gather everything with the
nature of a single musical note. This includes the usual
note as we know it (to keep it short), drum strokes, MIDI
events, elementary OSC messages, single Csound score
statements, single bols15 and more exotic objects like
projections (see below).

MusicalCollections subclasses are collections of
AtomicElements : a MusicalPhrase is a collection of
MusicalNotes, a CsoundScore gathers CsoundNotes,
a BolPhrase is a list of BolWords, etc.

By far the most important musical element is the musical
phrase. A lot of work has been put in its string
representation, so that it is actually by itself a very
compact domain-specific language of sort. This is not the
place to describe it16 ; let's just say that it is an
hypertrophied version of the KeyKit format for musical
phrases.

A major chord would be expressed as 'c,e,g' or
'c:maj'. The application of the fractal operator on

15 Mnemonic syllables originally used in Indian music
16 See "The String Representation of Musical Phrases in

µO" paper

3

the chord would be '/fractal/ c:maj' and be
equivalent to 'cd32,e,g,e,a-,b,g,b,do4'.

A more complex and less readable phrase like

'a,f,
{c"&&}{go2^,e,g^,e}{/nonleg/ e^&,g""},
{/r3/ f!":min,g}'

 would look like this in a phrase editor:

Among the important musical elements are envelopes. In
µO envelopes are first-class objects not bound to a
specific usage. They can be used to shape melodies or
pitch inflexions, modulate amplitudes, define accelerando
or spectral variations of a chord, bound stochastic
distributions, be converted into csound tables, etc.

Since they obey the musical element algebra, they can be
concatenated and mixed ; they can also be
programmatically defined, interactively edited and altered
in many different ways.

Envelopes are made of breakpoints and interpolation
functions. Because functions are themselves first-class
objects in µO, any form of interpolation can be defined ;
moreover, functions can be converted in envelopes, and
envelopes become functions17.

RhythmicCells are another important class of objects.
They are the building blocks of RhythmicCanvases ,
upon which music can be structured in time.

For example, the simple 4/4 time signature is
implemented as a rhythmic canvas of one single cell
defined by the Smalltalk code #((2 2) 4) sig.

Again, because rhythmic cells obey the musical element
algebra they can be combined arbitrarily, making it very
easy to create complex time signature and elaborate
canvases, then possibly shape them interactively or
programmatically . This is described in another paper18.

17 See for example in the Csound Journal :
http://www.csounds.com/journal/issue15/shaping_env
elopes.html

18 See "The Representation of Rhythmic Structures in
µO"

4.2. Modes and scales

In µO a scale (instance of class Scale) is an object
maintaining a list of intervals. There is no notion of
absolute pitch in a scale (no anchoring in the frequency
domain). A scale can span less or more than an octave.
Note that a µO scale is identical to what is called scale in
the Scala software19; the Scala format is supported.

A mode (instance of class Mode) is another object that
builds upon a scale by selecting only part of it: it
maintains a list of steps. Besides, a mode also maintains a
root frequency, which is the frequency associated with the
zero index in the list of steps, also called the tonic. The
tonic anchors the mode underlying scale in the frequency
domain.

This is described in detail elsewhere20. We will only give
a few examples here to give a taste of the way we can
work with modes.

The Smalltalk expression
(Mode major readPhrase: 'c,e,g') pitches

returns the list
#(261.6255653005987
 329.62755691287
 391.9954359817494)

In the following statement we change the tuning and the
temperament of the mode by setting its associated scale to
Serge Cordier's perfect-fifths temperament21 and by
specifying an historical tuning convention22 :

((Mode major
 scale: ChromaticScale perfectFifths)
 withHandelFork readPhrase: 'c,e,g')
pitches

now returns
#(250.8555226443194
 316.2621669801326
 376.283283966479)

Diatonic modes of the chromatic scale implement a
wealth of methods. A few examples :

Mode G dorian V7 is proper Smalltalk code and return
the dominant seventh chord 'do4 f+ a co5'.

Mode C major asMode: #lydian is also proper code
and return Mode F lydian.

19 by Manuel Op de Coul:
 http://www.huygens-fokker.org/scala/
20 See "Modes and Scales in µO"
21 S. Cordier: "Piano bien tempéré et justesse

orchestrale", ed. Buchet-Chastel 1982
22 See http://www.piano-tuners.org/history/pitch.html

4

Common Indian modes are also implemented, using a
sargam23 naming scheme for notes. For example, the code
IndianMode marwa view returns the following figure:

4.3. Inflected notes

Musical notes can have a varying pitch. It is possible to
convert a musical phrase into a single note, with a precise
control of the shape of the resulting inflexion.

Here we define in turn a mode with a non equal-tempered
scale, a phrase built on that mode, then an inflected note
built on that phrase :

mode:= IndianMode marwa sansAccidentals.
ph := mode readPhrase: 'SA, PA!, GA&, RE.'.
note:= ph staccato asInflectedNote: #smooth.

When such a note is transposed the inflexion shape is
modified in order to reflect the actual intervals it now
covers ; it is kept in tune. Below is note and its
transposition two mode steps up in a phrase editor. See
how the inflexion is aligned to the grid (where it does not
seem aligned, it is actually aligned to the underlying scale
steps) :

The amplitude of a note can also be modulated by an
envelope, allowing for example the removal of the note
attack.

4.3. Rhythm

Rhythm can be considered locally or globally : locally,
the setting of a musical element duration defines which
span of time the element claims for itself, so
concatenating elements of different durations creates a
local rhythm ; more globally, two appoaches are
implemented : the first one is a generalization of the

23 http://en.wikipedia.org/wiki/Swara

concept of time signature called the rhythmic canvas, and
the second is a representation of time in two dimensions
where rhythm unfold from a geometric structure via
projections (this is the continuation of the work started
with GeoMaestro24, see below).

Rhythmic cells can bridge the two global models and the
local notion of rhythm : we can get a cell from a musical
phrase (basically it amounts to extract note onsets from
the phrase, although this may be refined), and we can
assemble cells into a rhythmic canvas.

Here is how a cell can be created :

cell := 'c,e&,g!.' kphrase asRhythmicCell.
(cell % 2) weak
cell markDownBeat.

The cell is illustrated above. Time 0 is the down beat, the
strongest possible time. Time 0.5 is a weak time, time 1.5
is strong.

We get a rhythmic canvas from the cell with

canvas := cell asCanvas.

canvas is illustrated above ; it structures time by
duplicating cell everywhere : in that sense cell is a
time signature.

Let's create another cell :

cell2:= cell cc reverse.

We can add it to the canvas :

 canvas addCell: (cell2 delay: cell length*2)

canvas now features a change of time signature at time
4.5.

For more about rhythmic canvases and how to play with
them, please refer to the paper "The Representation of

24 http://www.zogotounga.net/GM/eGM0.html

5

Rhythmic Structures in µO"

4.4. The main µO interfaces

µO is an extension to Squeak ; the actual user interface is
the Squeak IDE, that is the Squeak image itself. This is a
very unique environment worthy of a lengthy discussion
which we will not have here25.

Among the tools specific to µO

25 See http://squeak.org/Documentation/

4.5. The main editors

4.6. Synthesizers

4.6. Projections

5. Emacs functionalities

5.1. Csound-x

To do

5.1. ABC mode

To do

5.1. Csound-x

To do

5.2. Eshell

To do

5.3. Python software : Music21 and AthenaCL

To do

5.4. Clojure and the Java API for Csound

To do

6

6. Supported standards and formats

ABC

MIDI

OSC

Scala

Csound

7. Bundled programs

Wavesurfer

Timidity

Sox

ABC2MIDI

Clojure

References

Surmulot home page :
http://www.zogotounga.net/surmulot/surmulot.html

7

